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The vertical flow of a fluid, under the influence of gravity, down the exterior of a rigid
fibre is a flow accompanied by rich dynamics manifested via the formation of droplets,
or beads, driven by a Rayleigh mechanism modulated by the presence of gravity.
These droplets propagate down the fibre and undergo coalescence with preceding
droplets. Different flow regimes are possible depending on system parameters such
as the fibre radius, liquid flow rate and physical properties. We derive an evolution
equation for the interface in the long-wavelength approximation, which captures
the flow characteristics of the system; this model is similar to those previously
used to investigate the dynamics of slender viscous threads in the absence of the
fibre. Analytical and numerical solutions of the evolution equation yield information
regarding the shape and propagation speeds of the droplets, which is in good
agreement with available experimental data as well as those obtained as part of
the present work. Connections with models already available in the literature are also
established.

1. Introduction
Cylindrical fluid threads and jets have been much studied since the seminal work

of Lord Rayleigh (1878) who identified the mechanism by which droplets form under
the action of surface tension. The dynamics and scalings of the breakup of fluid jets
and threads is of recurrent interest; a review of the recent literature is provided by
Eggers (1997). A related flow is that of a fluid film flowing on a circular fibre under
the influence of gravity. Here, surface tension is destabilizing leading to the formation
of droplets or beads on the fibre. This flow is the subject of the present work.

The coating of fibres has received some attention in the literature, mainly in
connection with the drawing of fibres from baths containing liquids in the presence
or absence of surfactant (Quéré 1999; Shen et al. 2002). The vertical flow down the
fibre has also been studied by several authors: experimental studies have shown that
the presence of a mean flow field modulates the surface-tension-driven flow, which can
potentially lead to film breakup, giving rise to interfacial waves of finite amplitude
(Quéré 1990; De Ryck & Quéré 1996). Most of the modelling work in this area
has mainly focused on the use of a lubrication-type approximation wherein the fibre
radius is taken to be much larger than the film thickness (see, for instance, Frenkel
1992; Kalliadasis & Chang 1994; Kerchman & Frenkel 1994; Chang & Demekhin
1999; Roy, Roberts & Simpson 2002). In contrast, Kliakhandler, Davis & Bankoff
(2001, referred to herein as KDB) consider the case where the film thickness is larger
than the fibre radius, a situation that renders the assumption of small thickness
invalid. They conducted experiments that revealed the richness of the dynamics of
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the flow down a vertical fibre and reported the existence of several flow regimes. They
also proposed the use of a model evolution equation for the interface, which does not
rely on the previously made lubrication-type assumptions. Their numerical solutions
appear to be in reasonably good agreement with some, but not all, of their flow
regimes. In particular, their model equation fails to capture a regime that features
beads separated by relatively long flat thin-film regions.

In the present work, we revisit this problem with the aim of developing a theory
capable of achieving better agreement with experimental observations. We derive an
evolution equation for the total fluid radius using asymptotic reduction which assumes
that the fluid radius is much smaller than its characteristic length (rather than the
fibre radius) based upon a capillary lengthscale. We show that this equation is very
similar to that used by KDB. We also show that numerical solutions of this equation
yield good agreement with the experimental observations of KDB as well as those
obtained as part of this work in terms of interfacial profiles, droplet spacings and
velocities.

The rest of this paper is organized as follows. In § 2, we formulate the problem using
a small parameter which is identified with the Bond number. The main evolution
equation derived reduces naturally to those deduced using a thin film thickness limit
and so a hierarchy of governing equations emerges. Travelling wave solutions and the
results of transient numerical simulations are presented in § 3; a brief comparison with
the experiments of KDB is also provided. Our experimental results are discussed in
§ 4 wherein we elucidate an instability that occurs in the wake of propagating widely
spaced droplets; good agreement between our experimental data and modelling
predictions is also demonstrated in this section. Finally, concluding remarks are
provided in § 5.

2. Formulation
2.1. Governing equations

A Newtonian fluid, of constant viscosity µ and density ρ, flows vertically and
axisymmetrically under gravity, whose acceleration is denoted by g, down a rigid
circular fibre of radius r = a whose axis is vertical (see figure 1). The vertical/axial
coordinate is z and is measured such that it is positive as one moves down the fibre.
The fluid ring is surrounded by an essentially inviscid gas whose dynamics will be
neglected. The initial (equilibrium) radius of the fluid ring measured from the centre
of the fibre is r = R. We make no assumption about whether (R − a)/a � 1 and we
treat the problem as an axisymmetric fluid thread that contains a rigid cylindrical
core. We therefore utilize scalings similar in spirit to those adopted in the long-wave
theories of viscous fluid threads and jets (Papageorgiou 1995a, b) and compound jets
(Craster, Matar & Papageorgiou 2002, 2005).

The film dynamics are governed by the Navier–Stokes equations in the fluid region:

ut + uur + wuz = − 1

ρ
pr +

µ

ρ

(
urr + uzz +

1

r
ur − u

r2

)
, (2.1)

wt + uwr + wwz = g − 1

ρ
pz +

µ

ρ

(
wrr + wzz +

1

r
wr

)
, (2.2)

where t denotes time, u and w represent the radial and axial components of the
velocity and p is the pressure. Note that unless stated otherwise, the subscript denotes
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Figure 1. Schematic representation of the flow geometry.

partial differentiation. The equation of continuity is expressed by

1

r
(ru)r + wz = 0. (2.3)

On the surface of the fibre, r = a, we have no slip, that is, u = w = 0, while the
normal and shear stress balances at the instantaneous location of the interface,
r = S(z, t), respectively, are

p − 2µ(
1 + S2

z

)(
S2

z wz − Sz(uz + wr ) + ur

)
= γ

(
1

S
(
1 + S2

z

)1/2
− Szz(

1 + S2
z

)3/2

)
, (2.4)

with a constant surface tension, γ , and(
1 − S2

z

)
(uz + wr ) + 2Sz(ur − wz) = 0. (2.5)

Finally, we have the kinematic condition on the free surface:

St + wSz = u. (2.6)

2.2. Scaling and asymptotic reduction

The aim is to solve the above equations in the long-wavelength limit. We therefore
assume that the radius of the fluid ring, R, is much smaller than its characteristic
length, L, and render the above governing equations dimensionless by adopting the
following scalings: r = Rr̂ , z = Lẑ, p = ρgLp̂, t = Lt̂/V, w = Vŵ, u = εVû where
V ≡ ρR2g/µ. Notably, we choose our radial lengthscale to be that associated with the
initial undisturbed radius of the fluid thread, not the fluid thickness or the fibre radius.
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The axial lengthscale, L, is taken to be related to the capillary length so L = γ /ρgR,
and thus the dimensionless equations will not rely upon the fluid thickness being
small relative to the fibre radius, but small relative to a dynamic lengthscale. Notably
a non-dimensional group, the Bond number Bo = ρgR2/γ , naturally appears and in
the experiments this is typically small (∼ 0.3 or so). The choice of lengthscale above
sets ε = Bo and this is then implicitly a low-Bond-number, surface-tension-dominated,
theory.

The dimensionless Navier–Stokes equations become (hereafter we drop the hat
decoration and exclusively use dimensionless variables except where otherwise stated
explicitly)

ε4Re(ut + uur + wuz) = −pr + ε2

(
urr + ε2uzz +

1

r
ur − u

r2

)
, (2.7)

ε2Re (wt + uwr + wwz) = 1 − pz +

(
wrr + ε2wzz +

1

r
wr

)
, (2.8)

where the Reynolds number is defined as Re = ρVL/µ and ε ≡ R/L. We now assume
that ε � 1 and Re = O(1) so that inertial contributions are removed henceforth. The
equation of continuity remains unaltered.

The no-slip condition, u = w = 0, is imposed on r = α where α = a/R < 1 is a
dimensionless ratio of the initial fluid radius to that of the fibre. Note that a small α

corresponds to a thick, and α → 1 to a thin, fluid layer, relative to the fibre radius.
The dimensionless normal stress balance at r = S(z, t) is given by

p − 2ε2(
1 + ε2S2

z

) (
ε2S2

z wz − Sz(ε
2uz + wr ) + ur

)
=

(
1

S
(
1 + ε2S2

z

)1/2
− ε2Szz(

1 + ε2S2
z

)3/2

)
.

(2.9)

The dimensionless shear stress balance is written as[(
1 − ε2S2

z

)
(ε2uz + wr ) + 2ε2Sz(ur − wz)

]
= 0. (2.10)

The kinematic boundary condition remains unchanged.
The leading-order radial and axial components of the Navier–Stokes equations are

given by

pr = 0, pz = 1 +
1

r
(rwr )r , (2.11)

while the leading-order normal and tangential stress balances at the interface are

p =
1

S
− ε2Szz, wr = 0. (2.12)

A notable term which is included here is the ε2Szz term in the pressure. Strictly
speaking, the inclusion of this term may appear to be ad hoc, but it has logical claims
for inclusion. It is the term of next order in ε2 that involves the highest derivative and,
as such, it is a singular perturbation suggesting that the Szz term should be important.
This is reflected in a linear analysis where the inclusion of this term is vital to ensure
the correct high-wavenumber cutoff occurs; conventionally this term, or even the full
curvature, is kept in long-wave theories of jets, threads and liquid bridges (Eggers &
Dupont 1994; Garcia & Castellanos 1994; Ambravaneswaran & Basaran 1999) for
these reasons and as its inclusion improves comparison with experiments. Moreover
in those theories it is also possible to proceed using an alternative Galerkin method
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as detailed in the review by Eggers (1997) which then leads to a consistent rationale
for retaining the full curvature.

Solving the equations above then yields an evolution equation for S(z, t) given by

St + w(S, z, t)Sz = u(S, z, t), (2.13)

wherein u(S, z, t), w(S, z, t) and p(z, t) are given by

u(S, z, t) =
(S2[pz − 1])z

8S

[
α2 − S2 + 2S2 log

S

α

]
− pzz

16S
(α2 − S2)2, (2.14)

w(S, z, t) = −1

4
(pz − 1)

[
α2 − S2 + 2S2 log

S

α

]
, (2.15)

p =
1

S
− ε2Szz. (2.16)

Note that we have utilized the no-slip condition at r = α in determining both u and w.
Equation (2.13) can be re-expressed as

8(S2)t =
∂

∂z

(
[pz − 1]

[
2S2

(
α2 − S2 + 2S2 log

S

α

)
− (α2 − S2)2

])
. (2.17)

Inspection of this equation reveals that mass is indeed conserved by demanding that
the solutions be periodic. We also note that with the exception of the ε2 factor in
the pressure, and the fact that those authors have also retained the full curvature
term, (2.13)–(2.16) are identical to the model equation used by KDB; the difference
is related to the choice of scalings in the present work.

The model also limits to evolution equations previously used in the literature.
Notably, if S(z, t) = α + η(z, t), where η � 1, so that the film is thin relative to the
fibre, one can expand (2.13) for small η to get(

1 +
η

α

)
ηt +

1

3

∂

∂z

[
η3

(
1 +

η

α

) (
1 +

ηz

α2(1 + η/α)2
+ ε2ηzzz

)]
= 0, (2.18)

which is related to the thin-layer model of Roy et al. (2002); there is a difference in
one of the terms (that multiplying the pressure gradient).

Since the equilibrium state has S = 1 we have 0 < η � 1−α and thus this expansion
and model are formally valid for small 1 − α; it also conserves mass as the first term
is [(η + α)2 − α2]t /2. Taking the leading term, so (1 + η/α) → 1, one recovers the
evolution equation of Frenkel (1992) as used by Kalliadasis & Chang (1994) and
others:

ηt +
1

3

∂

∂z
[η3(1 + ηz + ε2ηzzz)] = 0, (2.19)

which is valid either on the exterior, or interior, of a rigid wall at r = α; note that the
parameter α no longer appears explicitly in this equation, but is still present through
the boundary conditions. Equation (2.19) also corresponds to that of Hammond
(1983), to within a rescaling, when the gravitational term is absent, i.e.

ηt +
1

3

∂

∂z
[η3(ηz + ε2ηzzz)] = 0. (2.20)

Equation (2.13), which models the dynamics of the film down the vertical fibre, is
parameterized by α and ε. In order to determine a value for α (from an experimental
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run, say) one needs to know the volumetric flow rate:

Q = 2π

∫ S

α

rw dr = 2π(pz − 1)

(
(S2 − α2)(3S2 − α2)

16
− S4

4
log

S

α

)
, (2.21)

which, in dimensional variables for the equilibrium state, is given by

Q = 2π
ρga4

16µα4
(−(1 − α2)(3 − α2) − 4 log α); (2.22)

recall that α < 1 so Q is positive; thus given Q (easily measurable in the experiments)
we get α and hence the equilibrium film radius R, and similarly L, from which ε

follows.
With the non-dimensionalization above we make no statement about the fluid

layer being thin relative to the fibre radius: the fibre radius plays no role in the
non-dimensionalization of the governing equation. It only emerges as a parameter in
the boundary conditions, α, and plays no role in the non-dimensional Navier–Stokes
and stress and interface equations; it enters the model equations through the velocity
field u and w.

3. Numerical results
We begin the presentation of our results by examining briefly the linear stability

of (2.13) and comparing its predictions with those of the full Stokes flow problem as
well as the thin-layer theory, (2.18). We then present travelling wave solutions of the
flow followed by results from transient numerical simulations.

3.1. Linear stability analysis

We conduct a linear stability analysis by linearizing (2.13) about the following base
state:

S = 1, p = 1, w =
1

4

[
2 log

1

α
− (1 − α2)

]
, (3.1)

and adopting a normal mode approach: S = 1 + Ŝ exp(ikz + λt) wherein Ŝ is the
amplitude of the linear perturbation and k and λ are its (real) wavenumber and
(complex) growth rate. This yields the following expression for λ:

λ =
k2

16
(ε2k2 − 1)[(α2 − 1)2 − 2(α2 − 1 − 2 log α)] − ik

2
(α2 − 1 − 2 log α); (3.2)

this equation is identical to that of KDB except they have ε = 1. The maximum real
growth rate, λm, given by

λm =
1

64ε2
[2(α2 − 1 − 2 log α) − (α2 − 1)2], (3.3)

occurs for km = 1/
√

2ε; we call this the ‘most dangerous mode’. This is not the same
as that of a viscous Rayleigh jet, at zero Reynolds number, for which the k = 0 mode
is most unstable (Chandrasekhar 1961). The cut-off wavenumber kc = 1/ε for which
the real growth rate is zero, however, corresponds to the classical Rayleigh–Plateau
mode for the capillary instability of a viscous jet. Both the cut-off wavenumber, kc,
and most dangerous mode, km are short waves and strictly lie outside the range of
validity of the long-wave model.
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Figure 2. The variation of ε Re (Λ) with κ (see the Appendix for definitions of Λ and κ
and their relation to λ and k) for the different models. A comparison of the predictions
of the Stokes flow equations (dashed lines) with those of the long-wave (solid lines) (3.2)
and thin-layer (dot-dashed lines) (3.4) theories is shown for 0.5 � α � 0.9 in (a) and for
0.1 � α � 0.3 in (b).

As α → 1, (3.2) tends to

λ ∼ k2

3
(1 − ε2k2)(1 − α)3, (3.4)

which is the growth rate associated with the thin-layer models, (2.18) and (2.19).
In order to determine the range of α over which (2.13) provides a reasonably good

approximation of the full equations, we determine the linear stability characteristics of
the Stokes flow equations; these equations govern the flow in the absence of a disparity
in scales between the radial and axial dimensions, that is (r, z, h) ∼ R and (u, w) ∼ V.
The details of this analysis can be found in the Appendix. In figure 2, we show
dispersion relations obtained via solution of the Stokes flow problem and from long-
wave theory for different α values. Inspection of this plot reveals that the predictions
of long-wave theory are in excellent agreement with the solutions of the Stokes flow
problem for α � 0.4. The agreement, however, deteriorates for smaller α values. This
may be related to the fact that the pressure becomes increasingly radially dependent
with decreasing α. We also show in figure 2 the dispersion relations associated with
the thin-layer models, (2.18) and (2.19). Although the agreement between thin-layer
theory and the solutions of the Stokes flow problem deteriorates more rapidly for low
κ = εk (the curve for α = 0.1 shows this, and detailed examination of the other curves
shows similar behaviour albeit much less pronounced) it does, interestingly, appear
to follow the dispersion curve globally, for say α = 0.5, more closely than does the
full long-wave model. In spite of this, we use (2.13) to examine the film dynamics in
the remainder of this paper.

3.2. Travelling wave solutions

Experiments appear to show steadily propagating droplet or bead-like solutions that
are sometimes separated by long thinner regions of constant radius (KDB). To
investigate this further, we solve the governing equations by moving to a travelling
wave coordinate, ξ = z − ct where c is a constant wave speed to be determined. The
unknown fluid radius is S(z, t) = S(ξ ) and we apply periodic boundary conditions at
ξ = ±L/2, where L represents the length of the computational domain; for a single-
droplet solution L corresponds to the droplet–droplet spacing. Thus (2.13) becomes
a nonlinear differential eigenvalue problem where S and c are determined for given
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Figure 3. Travelling wave solutions: spacings and propagation speeds. (a, b) The droplet
speed, c, versus domain length, L, for α=0.25 and 0.5, respectively, and various ε = 0.25. In
(a), the darker and lighter grey lines show the predictions of (2.13) and (2.18), respectively.
The letters a,b, c, e and g in (a) refer to (L, c) combinations for which the profiles in figure 4
(the letters correspond to the panels in figure 4: f and c coincide) are computed. (c) A plot of
c∞ (the speed for a long L, here L = 30) versus ε for α = 0.25.

L. This is achieved numerically using a Newton–Kantorovich approach with Fourier
transforms providing the discretization in space, using n modes (typically n is either
256 or 512). We have n equally spaced gridpoints zi , i = 1 . . . n; however, there are
n+1 unknowns: the radial values Si , i = 1 . . . n (due to the spatial discretization) and
the wave speed c. In order to fix c, we impose the following condition as a constraint
on the fluid mass: ∫ L/2

−L/2

(S2(ξ ) − α2) dξ = L(1 − α2). (3.5)

One begins with a reasonable guess for the wave speed and profile, which via Newton
iterations rapidly converges to the solution; continuation is then used to track this
solution branch as parameters change.

Figure 3(a, b) shows the variation of the wave speed c with the domain length L

for α = 0.25 and 0.5. Here, ε is varied parameterically: ε = 0.1, 0.2 and 0.4. It is
evident that there is a trend such that solutions with smaller L travel slower than
those with larger L, implying that relatively long waves eventually catch up with,
coalesce and consume waves of shorter wavelength. It is also clear that the thinner
layer of fluid, characterized by α = 0.5, gives rise to droplets that propagate more
slowly for the same domain length than in the α = 0.25 case (see figure 3a): the curves
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Figure 4. Profiles of travelling wave solutions. (a), (b) and (c) Periodically extended solutions
for L = 2, 4, 8 for the points labelled ‘a’, ‘b’ and ‘c’ in figure 3, respectively. (d) The effect of
altering L on the shape of the solutions shown here for L = 4, 8, 16 and 32 with the arrow
indicating the direction of increasing L. In all these panels, α = 0.25 and ε = 0.2. (e), (f ) and
(g) The variation of the profiles for L = 8 and α = 0.25 with ε; here, ε = 0.1, 0.2 and 0.4,
corresponding to the points labelled ‘e’, ‘c’ and ‘g’ in figure 3(a), respectively. The left (right)
lines are profiles computed using (2.13) [(2.18)].

in figure 3b are shifted to the left with increasing α. This is due to the associated
increase in viscous retardation, as expected. For given α and ε values, no travelling
wave solutions could be found for a sufficiently small value of L. Inspection of figure 3
also reveals that c asymptotes to a value c∞ for large L; the variation of c∞ with ε

in figure 3 (c) shows that c∞ asymptotes to a constant value as ε → 1 (although the
results for the relatively large ε should be treated with caution since the models are
no longer valid in this range of parameters). Also shown in figure 3(a) (and figure 3c)
is a comparison between the predictions of (2.13) and (2.18). Clearly, the thin-layer
theory gives rise to similar trends to the long-wavelength model but underpredicts c

for given α, ε and L. The speed c decreases as ε increases; the relative importance
of surface tension decreases and the amplitude of the droplets also decreases so they
contain less mass.

In figure 4(a–c), we show S profiles for three different (L, c) combinations designated
by ‘a’, ‘b’, ‘c’ in figure 3(a). (Note that we plot ξ/ε rather than ξ in the ordinate axis.)
These profiles all exhibit droplet or bead-like structures of varying spacing; there are
small capillary ripples in the region wherein the beads adjust onto the preceding flat
region. The wave solutions characterized by relatively large L and c values comprise
beads that are separated by long, flat film regions of constant radius; the maximal
film radius, however, appears to be relatively insensitive to variations in L and c. In
figure 4(d), we show the effect of varying L on the solution profile with α = 0.25
and ε = 0.2; here c varies as these profiles are taken from points along the solid
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Figure 5. Non-uniqueness of solutions. (a) Length, L, versus speed, c, for single-, double- and
triple-bead solutions. The computed profiles for the points labelled ‘b’, ‘c’ and ‘d’ are shown
in (b–d), respectively. Here, c = 1.73, α = 0.25, ε = 0.2, as computed with L = 24, 16 and 8,
respectively.

line in figure 3(a). Clearly, increasing L results in a small quantitative change in the
profile but no qualitative variations. We have also investigated the effect of ε on
the flow profiles. In figure 4(e–g), we show solutions for the points ‘e’, ‘c’ and ‘g’ in
figure 3(a), which are characterized by L = 8 and α = 0.25, and ε = 0.1, 0.2 and 0.4,
respectively; the predictions of (2.13) and (2.18) are shown. It is worth recalling that
ε ≡ R/L = ρgR2/γ , which is a Bond number; thus increasing ε can be interpreted
as a decrease in the relative significance of surface tension and gravitational forces.
Inspection of figure 4(e–f ) shows that the solutions become more bead-like with
decreasing ε with more pronounced capillary waves in the ‘adjustment’ region. This
is to be expected since the surface tension forces become significant in this case
and drive a Rayleigh instability, which is responsible for the ultimate breakup of
a capillary thread. For larger ε values, gravitational forces are relatively dominant
and the solutions vary more smoothly over a wider range of the spatial domain
and exhibit much less pronounced peaks. The thin-layer model predictions are very
similar to those of (2.13) despite the relatively large difference in the predicted c

values (see figure 3a), although, once again, the results for the larger ε values should
be interpreted with caution since they may be outside the range of validity of the
models.

Equation (2.13) also exhibits non-uniqueness of solutions. Figure 5(b–d) shows three
solutions of different spacing, travelling at the same speed c, having the same α and ε

values; these correspond to the points marked ‘b’, ‘c’ and ‘d’ in figure 5(a). For a given
spatial interval, it is evident that the (periodically extended) travelling wave solutions
shown in figure 5(b–d) have three, two and a single bead respectively. (An experimental
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Figure 6. Disappearance of the travelling wave solution: (a) two profiles for ε = 0.05 (solid
line) and 0.1 (dashed line) with α = 0.25, and (b) the variation of the velocities with ε for two
different α values. L = 10.

Regime α ε cexpt L c hmax (mm) hexpt (mm) L (mm)

(a) 0.2551 0.2915 1.1698 5.81 1.195 1.51 1.47 3.4
(b) 0.2856 0.233 0.3200 1.637 0.656 1.29 1.02 3.7
(c) 0.3262 0.178 0.9318 8.185 1.36 1.41 1.20 4.3

Table 1. A comparison of the experimental and theoretical values for the spacings and
propagation speeds for the values of α and ε corresponding to the experimental observations
of KDB shown in figure 7.

photograph showing a periodically spaced two-pulse family, which bears structural
similarity to the numerical solutions depicted in figure 5c, is shown in figure 13
below.) Solution non-uniqueness is also a feature of related models which describe
the dynamics of falling planar films (Chang & Demekhin 2002) or on rotating disks
(Sisoev, Matar & Lawrence 2003). Therefore it is important to recognize the possibility
that there can exist flow regimes which are not just regularly spaced single droplets.

One feature that clearly emerges is that the travelling wave solution ceases to exist
below a critical value of ε (see figure 6), which is consistent with earlier studies of the
simpler model equation (2.19). In that case, one can rescale that equation to absorb
both ε and α into a single control parameter and, via matched asymptotic expansions
(Kalliadasis & Chang 1994; Chang & Demekhin 1999), show that the pulse-like waves
on an infinite domain disappear for a critical value of the control parameter and the
wave speed tends to infinity as this is approached. Here, we witness exactly the same
phenomenon: as ε is decreased the amplitude of the pulses and their velocity grow
dramatically (see figure 6a) until the system can no longer support drops of such
magnitude and solutions cease to be found numerically (or analytically, Kalliadasis
& Chang 1994; Chang & Demekhin 1999).

It is now possible to briefly compare with the experimental results of KDB: one
can identify the observed droplet spacing with L and then compute the corresponding
c and droplet profile. The results are shown in figure 7 and table 1 (it is notable that
the choice of lengthscale L is similar to that of the observed droplet lengths) in which
we plot the computed profiles in dimensional form and list the calculated droplet
speed c and maximal film thickness, hmax, respectively. For the longer spaced solutions
(see figure 7a), which correspond to KDB’s ‘regime (a)’, the agreement is excellent.
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Figure 7. Comparison with experiments. (a–c) Computed profiles for regimes ‘a’, ‘b’ and ‘c’ of
KDB, cf. their figure 1, which is reproduced on the right of this figure. The parameter values
for the experimental and numerically predicted profiles are shown in table 1.

We note that this regime could not be predicted using the model equation proposed
by KDB. The agreement with their ‘regime (c)’ (see figure 7c) is also good. For the
closer spaced beads (see figure 7b) corresponding to their ‘regime (b)’, the shortest
domain on which solutions could be found were L = 2.16 for which the calculated
c (see table 1) is approximately twice the observed value. In fact our experiments
performed later suggest that regime (b) is not a steady regime: we observed closely
spaced droplets near the inlet which sometimes persisted over a considerable length
before coalescence gave way to regime (a) and we therefore discount this regime; the
comparison with regime (b) is just given for completeness. Regime (c) is also not
steady as the large droplet is actually consuming the much smaller stationary droplet
ahead and in the experiments, and numerical simulations detailed later, one clearly
observes the large droplet to oscillate slightly; one could consider this a perturbation
to a steadily propagating droplet.

3.3. Transient simulations

The steadily propagating solutions have given insight into the range of travelling
droplet solutions that exists. There are clearly families of solutions, but the steady
analysis does not indicate whether any particular family is naturally selected. To
elucidate this, we perform numerical simulations of (2.13) over large times and
on relatively long domains. The numerical method employed to carry out the
computations uses Fourier transforms for spatial discretization (with 256–1024 modes)
and an implicit Gear’s method in time; periodic boundary conditions are imposed.
In order to inspire confidence in the performance of the numerical method, we have
ensured that its predictions are in excellent agreement with those of linear theory and
that mass is conserved.

Starting from a layer of uniform radius seeded with pseudo-random-noise dis-
turbances drawn from a uniform distribution in the range (−10−4 : 10−4) on relatively
short spatial domains, ‘convergence’ to steadily propagating solutions is achieved. An
example of this is shown in figure 8 for t = 100, −π < z < π and various α and ε
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Figure 8. ‘Steady’ solutions shown at t = 100 obtained via transient numerical simulations
of (2.13) starting from S = 1 perturbed by small-amplitude pseudo-random disturbances. The
results in (a–d), and (e–h) were generated with ε = 0.125 and ε = 0.2, respectively.

values. We note that for certain parameters, co-existence of travelling wave solutions
of different ‘families’ (featuring closely and widely spaced beads) is observed (see, for
instance, figure 7b, c); this is to be expected considering the results discussed in § 3.2.
As can also be seen in figure 7, increasing the average film radius (or decreasing
the fibre radius) by decreasing α leads to the formation of more pronounced, closely
spaced beads; a similar trend is also observed upon decreasing ε, which increases
the relative significance of the surface tension forces. It is also notable that when
plotted as S versus z the droplets have a non-dimensional length of order unity which
suggests that the choice of lengthscale in the non-dimensionalization is the appropriate
one.

We have also examined the film evolution for relatively large spatial domains
(−5π < z < 5π) initiated by pseudo-random disturbances of the same amplitude as
discussed earlier, and over long time intervals (up to t = 1000). In figure 9(a), we show
a space–time plot, which reveals that larger amplitude beads flowing down the fibre
coalesce with preceding smaller, slower moving droplets; these features are also present
in simulations of the simpler model equations, (2.18) and (2.19), see Kerchman &
Frenkel (1994), Kalliadasis & Chang (1994), Chang & Demekhin (1999), Roy, Roberts
& Simpson (2002). Figure 9(b) shows the solution at t = 650 over the entire domain,
while a ‘zoom-in’ on the interval −30 � z/ε � 60 is provided in figure 9(c); these plots
clearly show the larger bead at z/ε = 32 and the fact that small-amplitude waves
become apparent in its ‘wake’. These results reveal the complex dynamics which
accompany the flow of a film down a vertical fibre and, importantly, the competition
between the coarsening effect brought about by bead coalescence and the transition to
smaller scales that arises due to the instability in the relatively flat regions upstream
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Figure 9. (a) A space–time plot illustrating the complex dynamics accompanying a typical
film evolution with α = 0.6 and ε = 0.2, in which the light and dark shading indicate elevated
and depressed regions, respectively. The crossing of the lines signifies the coalescence of a fast
moving large bead with a slower moving smaller droplet located downstream. (b) The S profile
at t = 650. (c) A ‘zoom-in’ on the −30 � z/ε � 60 interval.

of the large structures. Thus, although there are regions in space where it almost
appears that there is convergence to a steady solution, this is not the case.

We have also investigated situations characterized by very small ε values wherein
surface tension provides the dominant driving force, by using travelling wave solutions
perturbed by pseudo-random-noise disturbances (of amplitude (−10−2 : 10−2)) as
initial conditions in our transient simulations. Thus the initial condition is that of a
single droplet propagating at known speed c on a length L with superimposed pseudo-
random noise; the transient code is adjusted to be in a moving coordinate frame, i.e.
ξ = z − ct and S(z, t) = S(ξ, t), translating at the speed c of the unperturbed droplet.
The length of the domain, L = 2π, is chosen to be several times that of the wavelength
associated with the most dangerous linear mode. Periodic boundary conditions are
applied, so this models the evolution of a train of steadily propagating droplets. The
low values of ε give rise to solutions featuring spatial regions of rapid variation.
In order to fully resolve these solutions, therefore, we utilize 1024 Fourier modes
in space; detailed checks of mass conservation were used and convergence upon
mesh refinement was also verified in order to confirm the accuracy of the numerical
simulations. In figure 10, we show the results from a simulation with α = 0.4 and
ε = 0.05 rendered as a space–time plot. The flat film on either side of the large bead is
linearly unstable and, therefore, prone to the formation of small-amplitude droplets.
The propagating larger bead consumes these growing droplets leaving behind a flat
film. As will be discussed below, this is reminiscent of the experimental observations
made as part of the present work. Also notable from figure 10 are the small-amplitude
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Figure 10. A space–time plot showing the film evolution with α = 0.4 and ε = 0.05 for
15 � t � 20 in a translating frame; here, L = 2π, c = 1.54.

back and forth oscillations of the main bead. These are caused by its consumption
of the smaller droplets ahead which increase its mass and velocity slightly. The bead
then appears to shed mass and decelerate, which re-initiates the instability in the flat
film behind it. The space–time plots are in the moving frame and indicate that these
oscillating beads propagate more slowly than the steadily propagating ones.

4. Experimental results
Here, we present the results of our brief experimental study. Our primary focus

is upon the well-separated droplet regime that the theory of KDB was unable to
capture, and upon the situation when the main droplet is unstable. It is notable that
we never observed regime (b) of KDB except near the inlet. A comparison between
our numerical simulations and experimental observations is also provided.

4.1. Setup

KDB provide a brief experimental study of the flow using castor oil and, in § 3.2, we
provided a comparison with their experimental observations. To gain further insight
into the film dynamics, we have conducted our own experiments using silicone oil
(Dow Corning 500 cS coloured with small amounts of Sudan II) of kinematic viscosity
ν = 5 cm2 s−1, surface tension 20.4 dyn cm−1 and density 0.97 g cm−3, flowing down
nylon fishing line (of two diameters 0.53mm and 0.25 mm); here, for brevity we
primarily report the results associated with the 0.25 mm diameter fibre. Fixed flow
rates were achieved using a gravity feed from a large container; the flow rates are very
small, the largest being Q = 0.07 cm3 s−1. The fluid drained into a small container
that was regularly weighed using a jeweller’s balance (accurate to ±0.005 g). The
photographs were taken with a 3 MegaPixel Canon digital camera with video clips
fed into a standard PC from which the velocity of the beads was readily extracted.

4.2. Observations

For Q = 0.01 cm3 s−1, α = 0.17, and ε = 0.25, we observed the rapid growth of
small perturbations originating from the inlet into a fine structure of droplets. Many
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Figure 11. Experimentally observed profiles obtained for a fibre diameter of 0.25mm. The
flow rate is Q = 0.01 cm3 s−1 in (a) and Q = 10−4, 10−5 cm3 s−1 in (b) and (c), respectively.
The profiles shown in (a) were taken at time intervals separated by 5 s.

of these droplets undergo coalescence with preceding drops and then propagate
more rapidly due to the associated increase in their mass. A more regular structure
emerges approximately 1 m from the inlet: isolated droplets of similar shape propagate
down the fibre with variable spacing, but at very similar speeds (see figure 11a–c).
Occasionally, a large bead emerges and consumes smaller neighbouring droplets in
its immediate downstream vicinity with new droplets emerging in its ‘wake’.

At lower flow rates, one observes a very closely spaced ‘beads on a string’ structure
over a distance of 1 m from the inlet, propagating slowly. As this ‘chain’ of beads
progresses further downstream, the gap between the droplets increases and the droplets
consume each other, grow in magnitude and propagate more rapidly. Typically, a
single bead becomes dominant and consumes the droplets ahead leaving, once again,
a flat film in its wake from which a new set of closely spaced, slowly moving
droplets emerges (this behaviour is noticeable for Q ∼ 10−4 cm3 s−1). An aesthetically
appealing regular sequence of large drops propagating down the fibre with the flat
film behind nucleating new droplets emerges of which figure 11(b) is an example.
Here, the droplet at 270 mm leaves a flat film in its wake which is unstable and upon
which the instability has time to grow until it is clearly visible; these small droplets
move very slowly and the faster propagating large droplet at 210 mm is about to
consume them. It then leaves a flat film behind and the process is repeated. As the
flux is decreased further, the large droplets become less frequent, and the string of very
slowly propagating droplets left in their wake remain for long periods (see figure 11c).

The results shown in figure 11 can be rationalized via inspection of figure 12, which
shows the variation of α with ε as a result of altering Q. An increase in Q gives rise to
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Figure 12. The variation of α with ε for varying Q; the arrow shows the direction of increasing
Q. The points labelled with a circle, triangle and square correspond to Q = 10−2, 10−4 and
10−5 cm3 s−1 and the profiles shown in panels (a), (b) and (c) of figure 11, respectively. The
curves labelled ‘Thin’ and ‘Thick’ correspond to fibre diameters of 0.25 mm and 0.53 mm,
respectively.

thicker films, smaller α and larger ε values, which implies a decrease in the significance
of capillarity in relation to gravitational forces. As indicated in figure 12, a value of
Q = 10−2 cm3 s−1 leads to small α and large ε values, implying a gravity-dominated
situation and explaining the emergence of the steadily propagating, regularly-spaced
bead regime shown in figure 11(a). The regimes characterized by regular droplets,
with a long intervening flat film that becomes unstable, shown in figure 11(b, c),
corresponds to smaller flow rates and, consequently, smaller ε and large α values,
which is a surface-tension-dominated flow regime. Note that altering the fibre radius
and/or the surface tension gives rise to different curves of similar shape (see figure 11)
and that variation of the viscosity has a similar effect to altering the flux: decreasing
ν increases Q and ε, and decreases α. The lengthscale L = γ /ρgR in each of the
experiments shown in figure 11 is 4.6, 6.9 and 10 mm for (a), (b) and (c), respectively,
which is broadly the lengthscale over which one expects surface tension to act, i.e.
over a droplet.

The observed behaviour for the flow down the thicker fibre was very similar to
that associated with the thinner one and some typical photographs are shown in
figure 13. In figure 13(a) of this figure, we show an experimental profile of the film
thickness for Q = 0.07 cm3 s−1, α = 0.25 and ε = 0.75, which is arguably outside
the asymptotic regime of the model; nonetheless the estimate of c, c ∼ 5.5 cm s−1,
taken from a single pulse on an effectively infinite computational length, compares
reasonably with the experimental value of 4.8 cm s−1 (for this case L = 2 mm). The
other panels in figure 13 show the development of a two-pulse periodic family that
appeared at lower Q; panel (c) being an enlargement of (b) illustrates more clearly
the small capillary droplets just ahead of the leading droplet. Upon decreasing the
flux further, one sees the formation of the leading droplet from the largest unstable
drop created by the flat-layer instability. Subsequently, this pair of larger droplets
propagated down together with the leading droplet consuming smaller ones along its
path.

In contrast to KDB, we did not witness distinct regimes, but more a gradual trend
in the data. For instance, we only saw their regime (b) near the inlet and we view this
as a transient feature. The steady, well-spaced, travelling droplets of their regime (a)
are seen almost exclusively, but with a gradual transition as the flux decreases to more
widely spaced droplets. Eventually, the long flat film between the droplets becomes
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Figure 13. Typical experimental profiles for the ‘thick’ fibre. (a) A high flux case,
Q = 0.07 cm3 s−1. (b–d) Experiments at lower Q, Q ∼ 10−4 cm s−1.

itself unstable and the instability has time to visibly grow. These small stationary
droplets are then consumed by the travelling droplets; the increase in mass upon
consumption caused a slight increase in velocity and the slight thinning just behind
the droplet then causes it to decelerate leading to visible oscillations; this is then
regime (c) of KDB.

4.3. Comparison with theory

In figure 14(a, b), we show a profile of the film radius obtained from our experiments
and a numerical prediction determined via a travelling wave solution of (2.13); the
parameter values are the same as those used to generate figure 11 (as indicated by
the circle on the curve marked ‘Thin’ in figure 12). Inspection of these panels reveals
relatively good agreement between theory and experiment in terms of interfacial
profile. The predicted speed is c = 2.4 cm s−1, which is also in reasonably good
agreement with the experimentally measured value of c = 2.08−1cm s−1. Note that the
travelling wave solution is taken to be the single-droplet solution on an effectively
infinite (L = 20) domain; there is a unique single-droplet solution for that problem.
The length of the computational domain, cf. figure 3, is not an important parameter
as the speeds asymptote to a fixed value and this therefore provides a predictive upper
bound upon the experimental droplet velocity.

Next, we provide numerical predictions for the parameter values corresponding to
those indicated by the square and triangle in figure 12, that, in turn, correspond to
large α and small ε values (implying a surface-tension-dominated regime) for which
the experimental profiles are shown in figure 11(b, c). In figure 14(c, d), we show
interfacial profiles which are solutions of (2.13); these were obtained in a similar
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Figure 14. A comparison of an experimental profile (for the thin fibre) characterized by
α = 0.17 and ε = 0.254, (a), with the corresponding steady solution of (2.13) cast in dimensional
variables, (b), generated numerically with L = 20. (c, d) Computed profiles obtained via
transient numerical solutions of (2.13) with α = 0.4 and ε = 0.05, and α = 0.7 and ε = 0.025,
respectively, and the same initial conditions as for figure 10.

manner to those shown in figure 10. Comparison of figures 14(c) and 14(d) with 11(b)
and 11(c), respectively, reveals that the salient features observed in the experiments
are captured by our model. Particularly apparent are the small-scale oscillations in
the relatively flat regions upstream and downstream of the prominent beads. These
are driven by a linear instability of the flat regions: the wavelength of the small-scale
droplets in figure 14(c, d) is the same as that associated with the most dangerous
linear mode for this set of parameter values. These droplets are then consumed by
the larger, faster-moving bead, which leaves behind a thin flat film that, once again, is
vulnerable to a linear instability and the nucleation of small-scale droplets and so on.
At the end of the previous section we noted that in the simulations the large beads
oscillated slightly as they consumed the droplets downstream; this behaviour is also
visible in the experiments.

5. Concluding remarks
We have conducted a study of flow down a vertical fibre and derived an evolution

equation for the interface using long-wave theory parameterized by a dimensionless
thickness parameter, α, and an aspect ratio, ε; making use of the capillary lengthscale,
we identify ε as the Bond number. The main assumption underlying our model is
that the characteristic radius of the total fluid is much smaller than the capillary
lengthscale, that is, ε is small. The evolution equation we derived reduces to those
previously used in the literature, based on the thin-layer limit, that assume the film
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thickness to be much smaller than the fibre radius; our model is similar to the
equation used by KDB (except in the curvature).

We observe travelling waves that are obtained via the solution of a nonlinear
eigenvalue problem, where the eigenvalue corresponds to the speed of propagation.
The effect of system parameters on the structure, spacing and speed of these solutions
was analysed; an interesting point is that the equations allow for a multiplicity
of solutions. The model equations lead to widely spaced droplet solutions similar
to those found in experiments. These results, along with those obtained from
transient numerical simulations using a spectral method, compare reasonably with
our experimental data, as well as other results available in the literature.

Appendix. Linear stability of the Stokes flow problem
Here, we perform a linear stability analysis of the Stokes equations which govern

the flow of a film down a vertical fibre in the absence of a disparity in scales between
the radial and axial coordinates. To this end, we scale z on R rather than L so
that the governing equations become ∇p = ∇2u and ∇ · u = 0, with no shear stress
and the usual normal stress conditions at the interface, and no-slip on the fibre
surface. We conduct a linear stability analysis of these equations via the following
linearization:

p =
1

Bo
+ p̂, u = û, S = 1 + Ŝ, w = w0(r) + ŵ, (A 1)

where Bo ≡ ρgR2/γ is a Bond number and the hatted variables denote small
perturbations; the base-state axial velocity is given by

w0(r) =
1

4

(
2 log

r

α
− (r2 − α2)

)
. (A 2)

The perturbation quantities satisfy

∇p̂ = ∇2û, ∇ · û = 0, (A 3)

subject to

û = ŵ = 0 on r = α, (A 4)

p̂ − 2ûr = − 1

Bo
(Ŝ + Ŝzz), ŵr + ûz = Ŝ, Ŝt + w0(1)Ŝz = û(1), on r = 1. (A 5)

Note that the term Ŝzz remains in the pressure, cf. the discussion about the retention
of ε2Szz following equation (2.12).

The perturbed quantities are then expanded using normal modes:

(û, ŵ, p̂)(r, z, t) = (ũ, w̃, p̃)(r) exp(iκz + Λt), Ŝ = S̃ exp(iκz + Λt), (A 6)

where κ and Λ are the (real) wavenumber and (complex) growth of the perturbations,
respectively. The scaling for z (and implicitly for time) adopted here, which is different
from that used in the main text, implies that κ = kε and Λ = λε, (k and λ are the
wavenumber and growth rate for long-wave theory, respectively) and that Bo = ε.
Then one can map between the long-wave and the Stokes flow solutions with no free
parameters.
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The solutions for ũ, w̃ and p̃ are obtained in terms of Bessel functions:

ũ =
a1

2κ
(κrI0(κr) − 2I1(κr)) + a2I1(κr) +

a3

2κ
(κrK0(κr) + 2K1(κr)) − a4K1(κr), (A 7)

w̃ =
ia1

2
rI1(κr) + ia2I0(κr) − ia3

2
rK1(κr) + ia4K0(κr), (A 8)

p̃ = a1I0(κr) + a3K0(κr). (A 9)

Substitution of (A 7)–(A 9) into (A 4) and (A 5) ultimately leads to a characteristic
equation for the growth from which it is possible to construct dispersion relations
for the real part of the growth rate as a function of the wavenumber. A comparison
of these dispersion relations with those obtained from long-wave theory is shown in
figure 2 for different values of α.
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